login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140806 Expansion of x *(1+x) *(x^2+1) *(15*x^4+1) / ( (x^4-2*x^3+2*x^2+2*x+1) *(x^4+2*x^3+2*x^2-2*x+1) ). 0
1, 1, 1, 1, 1, 1, 1, 1, -15, -15, -15, -15, 209, 209, 209, 209, -2911, -2911, -2911, -2911, 40545, 40545, 40545, 40545, -564719, -564719, -564719, -564719, 7865521, 7865521, 7865521, 7865521, -109552575, -109552575, -109552575, -109552575, 1525870529, 1525870529, 1525870529 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

A Matrix Markov sequence based on the polynomial in the cubic elliptic invariant of A113922: characteristic polynomial x^8+14*x^4+1; Bezout matrix in the Mathematica code.

LINKS

Table of n, a(n) for n=1..39.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,-14,0,0,0,-1).

FORMULA

M = {{0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 1}, {-1, 0, 0, 0, -14, 0, 0, 0}}; v(n)=M.v(n-1): a(n)=v(n)( element 1).

MATHEMATICA

M = {{0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 1}, {-1, 0, 0, 0, -14, 0, 0, 0}}; v[0] = {1, 1, 1, 1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[v[n][[1]], {n, 0, 50}]

CROSSREFS

Cf. A113922.

Sequence in context: A010854 A003884 A225917 * A085321 A239315 A003890

Adjacent sequences:  A140803 A140804 A140805 * A140807 A140808 A140809

KEYWORD

uned,sign

AUTHOR

Roger L. Bagula and Gary W. Adamson, Jul 15 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 01:40 EDT 2019. Contains 328025 sequences. (Running on oeis4.)