This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140805 Positive triangular sequence of coefficients inspired by the Belyi transform: x'->(m + n)^(n + m)*x^m*(1 - x)^n/(m^m*n^n): t(n,m)=Binomial[n, m]^Binomial[n, m]. 0
 1, 1, 1, 1, 4, 1, 1, 27, 27, 1, 1, 256, 46656, 256, 1, 1, 3125, 10000000000, 10000000000, 3125, 1, 1, 46656, 437893890380859375, 104857600000000000000000000, 437893890380859375, 46656, 1, 1, 823543, 5842587018385982521381124421 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums are: 1, 2, 6, 56, 47170, 20000006252, 104857600875787780761812064, ... These symmetrical coefficients remind one of Calbi-Yau base Hodge Diamond matrices. These numbers get large very fast. REFERENCES Leila Schneps (editor), The Grothendieck Theory of Dessins D'enfants, London Mathematical Society, Cambridge Press, page 49 LINKS FORMULA t(n,m)=Binomial[n, m]^Binomial[n, m]. EXAMPLE {1}, {1, 1}, {1, 4, 1}, {1, 27, 27, 1}, {1, 256, 46656, 256, 1}, {1, 3125, 10000000000, 10000000000, 3125, 1}, {1, 46656, 437893890380859375, 104857600000000000000000000, 437893890380859375, 46656, 1}, {1, 823543, 5842587018385982521381124421, 1102507499354148695951786433413508348166942596435546875, 1102507499354148695951786433413508348166942596435546875, 5842587018385982521381124421, 823543, 1} MATHEMATICA Clear[t, n, m, a] t[n_, m_] = Binomial[n, m]^Binomial[n, m]; a = Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[a] CROSSREFS Sequence in context: A088158 A136449 A209427 * A113370 A078536 A173918 Adjacent sequences:  A140802 A140803 A140804 * A140806 A140807 A140808 KEYWORD nonn,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, Jul 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 25 21:06 EDT 2019. Contains 322461 sequences. (Running on oeis4.)