This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140803 Numbers of the form (2^(p*q)-1) /((2^p-1)*(2^q-1)), where p>q are primes. 3
 3, 11, 43, 151, 683, 2359, 2731, 43691, 174763, 599479, 2796203, 8727391, 9588151, 178956971, 715827883, 2454285751, 39268347319, 45812984491, 567767102431, 733007751851, 2932031007403, 10052678938039, 46912496118443, 145295143558111, 3002399751580331, 41175768098368951, 192153584101141163 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The sequence contains, in particular, A126614 (q=2) and A143012 (q=3). If pq-1 is squarefree then the terms of the sequence are either primes or overpseudoprimes to base 2 (see A141232). In particular, they are strong pseudoprimes to base 2 (A001262). LINKS Robert Israel, Table of n, a(n) for n = 1..825 V. Shevelev, Process of "primoverization" of numbers of the form a^n-1, arXiv:0807.2332 [math.NT], 2008. S. Wagstaff, Factorizations of 2^n-1 EXAMPLE Entry 3 from (q=2,p=3), entry 11 from (q=2,p=5), entry 43 from (q=2,p=7), entry 151 from (q=3,p=5), entry 683 from (q=2,p=11). MAPLE N:= 100: # to use all (p, q) with p*q < N Primes:= select(isprime, [\$2..floor(N/2)]): A:= {}: for i from 1 to nops(Primes) do   p:= Primes[i];   Qs:= select(q -> q < N/p, [seq(Primes[j], j=1..i-1)]);   A:= A union {seq((2^(p*q)-1)/(2^p-1)/(2^q-1), q=Qs)}; od: A; # Robert Israel, Sep 02 2014 MATHEMATICA terms = 27; Clear[seq]; seq[m_] := seq[m] = Table[(2^(p q)-1)/((2^p-1) (2^q-1)), {q, Prime[Range[m]]}, {p, Prime[Range[PrimePi[q]+1, terms]]}] // Flatten // Union // PadRight[#, terms]&; seq[1]; seq[m=2]; While[seq[m] != seq[m-1], m++]; seq[m] (* Jean-François Alcover, Sep 17 2018 *) CROSSREFS Cf. A001262, A141232, A126614, A143012. Sequence in context: A249568 A106876 A034477 * A246758 A084643 A302705 Adjacent sequences:  A140800 A140801 A140802 * A140804 A140805 A140806 KEYWORD nonn AUTHOR Vladimir Shevelev, Jul 15 2008, Jul 22 2008; corrected Sep 07 2008 EXTENSIONS a(17) to a(27) from Robert Israel, Sep 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 16:17 EDT 2019. Contains 322310 sequences. (Running on oeis4.)