%I #16 Oct 21 2023 21:48:11
%S 0,1,3,4,6,7,9,10,12,14,15,17,18,20,21,23,25,26,28,29,31,32,34,36,37,
%T 39,40,42,43,45,47,48,50,51,53,54,56,58,59,61,62,64,65,67,69,70,72,73,
%U 75,76,78,80,81,83,84,86,87,89,91,92,94,95,97,98,100,102,103,105
%N a(n) = floor(n*Pi/2).
%C Beatty sequence for Pi/2; complement of A108589; not the same as A093610: a(23)=36 <> A093610(23)=35.
%H G. C. Greubel, <a href="/A140758/b140758.txt">Table of n, a(n) for n = 0..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>
%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%e For n = 5, 5*(Pi/2) approximately equals 7.854, and floor(7.854) = 7.
%t Floor[Pi*Range[0,80]/2] (* _G. C. Greubel_, Oct 21 2023 *)
%o (Python)
%o import math
%o x=0
%o while x < 36001:
%o y = math.radians(x)
%o z = math.trunc(y)
%o print(z, end=", ")
%o x += 90
%o # Mick Purcell (mickpurcell(AT)gmail.com), Oct 05 2009
%o (Magma) R:= RealField(40); [Floor(n*Pi(R)/2): n in [0..80]]; // _G. C. Greubel_, Oct 21 2023
%o (SageMath) [floor(n*pi/2) for n in range(81)] # _G. C. Greubel_, Oct 21 2023
%Y Cf. A022844, A038130, A108590.
%K nonn
%O 0,3
%A _Reinhard Zumkeller_, May 27 2008
%E 0 added by Mick Purcell (mickpurcell(AT)gmail.com), Oct 05 2009