login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140697 Mobius transform of A000082. 1
1, 5, 11, 18, 29, 55, 55, 72, 96, 145, 131, 198, 181, 275, 319, 288, 305, 480, 379, 522, 605, 655, 551, 792, 720, 905, 864, 990, 869, 1595, 991, 1152, 1441, 1525, 1595, 1728, 1405, 1895, 1991, 2088, 1721, 3025, 1891, 2358, 2784, 2755, 2255, 3168, 2688, 3600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Dirichlet convolution of the sequence of (absolute values of A055615) and A007434. - R. J. Mathar, Feb 27 2011

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

FORMULA

Dirichlet g.f. zeta(s-1)*zeta(s-2)/(zeta(2s-2)*zeta(s)). - R. J. Mathar, Feb 27 2011

Sum_{k=1..n} a(k) ~ 5*n^3 / (Pi^2 * Zeta(3)). - Vaclav Kotesovec, Jan 11 2019

EXAMPLE

a(4) = 18 = (0, -1, 0, 1) dot (1, 6, 12, 24), where (0, -1 0, 1) = row 4 of A054525 and A000082 = (1, 6, 12, 24, 30, 72,...).

MAPLE

with (numtheory): a:= n-> add (k^2* mul(1+1/p, p=factorset(k)) *mobius (n/k), k=divisors(n)): seq (a(n), n=1..60); # Alois P. Heinz, Aug 28 2008

MATHEMATICA

a[n_] := Sum[ k^2*Product[ 1+1/p, {p, FactorInteger[k][[All, 1]]}]* MoebiusMu[n/k], {k, Divisors[n]}] - MoebiusMu[n]; Table[a[n], {n, 1, 50}] (* Jean-Fran├žois Alcover, Sep 03 2012, after Alois P. Heinz *)

CROSSREFS

Cf. A000082.

Sequence in context: A080566 A094684 A240438 * A048253 A102174 A140515

Adjacent sequences:  A140694 A140695 A140696 * A140698 A140699 A140700

KEYWORD

nonn,easy,mult,changed

AUTHOR

Gary W. Adamson, May 23 2008

EXTENSIONS

Definition corrected by N. J. A. Sloane, Jul 28 2008

More terms from Alois P. Heinz, Aug 28 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 16:40 EST 2019. Contains 319271 sequences. (Running on oeis4.)