login
Triangle T(n,k) = gcd(n,k)-binomial(n,k), 0<=k<=n.
1

%I #8 Jan 17 2013 11:09:38

%S -1,0,0,1,-1,1,2,-2,-2,2,3,-3,-4,-3,3,4,-4,-9,-9,-4,4,5,-5,-13,-17,

%T -13,-5,5,6,-6,-20,-34,-34,-20,-6,6,7,-7,-26,-55,-66,-55,-26,-7,7,8,

%U -8,-35,-81,-125,-125,-81,-35,-8,8,9,-9,-43,-119,-208,-247,-208,-119,-43,-9,9

%N Triangle T(n,k) = gcd(n,k)-binomial(n,k), 0<=k<=n.

%C Row sums are -1, 0, 1, 0, -4, -18, -43, -108, -228, -482, -987...

%F T(n,k) = T(n,n-k).

%F T(n,k) = A109004(n,k)-A007318(n,k). - _R. J. Mathar_, Jan 17 2013

%e -1;

%e 0, 0;

%e 1, -1, 1;

%e 2, -2, -2, 2;

%e 3, -3, -4, -3, 3;

%e 4, -4, -9, -9, -4, 4;

%e 5, -5, -13, -17, -13, -5, 5;

%e 6, -6, -20, -34, -34, -20, -6, 6;

%e 7, -7, -26, -55, -66, -55, -26, -7, 7;

%e 8, -8, -35, -81, -125, -125, -81, -35, -8, 8;

%e 9, -9, -43, -119, -208, -247, -208, -119, -43, -9, 9;

%p A140682 := proc(n,k)

%p igcd(n,k)-binomial(n,k) ;

%p end proc: # _R. J. Mathar_, Jan 17 2013

%t Clear[p, x, n] p[x_, n_] = Sum[(GCD[n, i] - Binomial[n, i])*x^i, {i, 0, n}]; Table[ExpandAll[p[x, n]], {n, 1, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 1, 10}]; Flatten[a]

%Y Cf. A109004.

%K tabl,easy,sign

%O 0,7

%A _Roger L. Bagula_ and _Gary W. Adamson_, Jul 11 2008

%E New name, editing, and missing leading terms added. - _R. J. Mathar_, Jan 17 2013