|
|
A140609
|
|
Numbers never equal to the number of partitions of any p into k parts (2<k<=n).
|
|
0
|
|
|
17, 25, 31, 32, 36, 43, 45, 46, 50, 51, 53, 59, 60, 62, 63, 66, 67, 68, 69, 74, 78, 79, 81, 83, 86, 87, 88, 92, 93, 95, 98
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) is the least number greater than a(n-1) which never occurs in the sequence S(p,q) {p;0;infinity}{k;3;p).
Any number q appears twice for k =2 as S(2*q,2) and S(2*q+1,2)
For k >2 the smallest values of natural numbers appear for first time as follows for increasing p:
1=S(3,3)
2=S(5,3)
3=S(6,3)
4=S(7,3)
5=S(8,3)
6=S(9,4)
7=S(9,3)
8=S(10,3)
9=S(10,4)
10=S(11,3)
11=S(11,4)
12=S(12,3)
13=S(12,5)
14=S(13,3)
15=S(12,4)
16=S(14,3)
18=S(13,4)
17 never occurs, hence a(1) = 17
|
|
LINKS
|
Table of n, a(n) for n=1..31.
|
|
CROSSREFS
|
Cf. A000041; A002865.
Sequence in context: A105448 A336007 A082130 * A131275 A227238 A294689
Adjacent sequences: A140606 A140607 A140608 * A140610 A140611 A140612
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Philippe Lallouet (philip.lallouet(AT)orange.fr), May 18 2008
|
|
STATUS
|
approved
|
|
|
|