%I #8 Jun 23 2020 04:45:34
%S 6,11,16,22,26,38,44,53,61,73,84
%N Number of primes p with height h(p) = 1 and fundamental units epsilon(p) < 10^n.
%H Yasufumi Hashimoto, <a href="https://arxiv.org/abs/0807.0056v1">Asymptotic formulas for partial sums of class numbers of indefinite binary quadratic forms</a>, arXiv:0807.0056 [math.NT], 2008. See table p. 12.
%e The enumerated primes p with height h(p) = 1 and fundamental units epsilon(p) < 10^2 are {5, 2, 13, 29, 53, 17}.
%e With epsilon(p) < 10^3 the primes are {37, 173, 293, 101, 197}.
%e With epsilon(p) < 10^4 the primes are {61, 677, 149, 41, 317}.
%e With epsilon(p) < 10^5 the primes are {773, 629, 157, 557, 109}.
%e With epsilon(p) < 10^6 the primes are {461, 797, 2477, 1013, 509}.
%e With epsilon(p) < 10^7 the primes are {89, 941, 181, 113, 1877, 653, 73, 1493, 3533, 389, 277, 1613}.
%e With epsilon(p) < 10^8 the primes are {397, 137, 2693, 1637, 1277, 1997}.
%e With epsilon(p) < 10^9 the primes are {373, 97, 821, 2309, 349, 701, 4157, 853, 1181}.
%e With epsilon(p) < 10^10 the primes are {4973, 233, 2357, 4373, 4253, 2957, 3797, 613}.
%e With epsilon(p) < 10^11 the primes are {1109, 3989, 353, 1949, 997, 1733, 1973, 4517, 2621, 7013, 9173}.
%e With epsilon(p) < 10^12 the primes are {1061, 2333, 4133, 1301, 2789, 421, 5309, 877, 3677, 3461, 10853, 2141}.
%K nonn,more
%O 2,1
%A _Jonathan Vos Post_, Jul 03 2008