login
Trajectory of 2 under repeated application of the map: n -> n + third-smallest number that does not divide n.
5

%I #19 Nov 15 2024 09:04:17

%S 2,7,11,15,21,26,31,35,39,44,50,56,62,67,71,75,81,86,91,95,99,104,110,

%T 116,122,127,131,135,141,146,151,155,159,164,170,176,182,187,191,195,

%U 201,206,211,215,219,224,230,236,242,247,251,255,261,266,271,275,279,284,290,296

%N Trajectory of 2 under repeated application of the map: n -> n + third-smallest number that does not divide n.

%H Harvey P. Dale, <a href="/A140491/b140491.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,0,1,-1).

%F From _Chai Wah Wu_, Nov 14 2024: (Start)

%F A140490-A140493 all converge to the same trajectory.

%F a(n) = a(n-1) + a(n-12) - a(n-13) for n > 13.

%F G.f.: x*(4*x^12 + 6*x^11 + 6*x^10 + 5*x^9 + 4*x^8 + 4*x^7 + 5*x^6 + 5*x^5 + 6*x^4 + 4*x^3 + 4*x^2 + 5*x + 2)/(x^13 - x^12 - x + 1). (End)

%t NestList[Complement[Range[3+#],Divisors[#]][[3]]+#&,2,60] (* _Harvey P. Dale_, Jan 15 2024 *)

%o (PARI) third(n) = {my(nb = 0, k = 1); while (nb != 3, if (n % k, nb++); if (nb != 3, k++);); k;}

%o f(n) = n + third(n);

%o lista2(nn) = {a = 2; print1(a, ", "); for (n=2, nn, newa = f(a); print1(newa, ", "); a = f(a););} \\ _Michel Marcus_, Oct 04 2018

%Y Cf. A140485, A140486, A140487, A140488, A140489 (second-smallest sequences).

%Y Cf. A140490, A140492, A140493, A140494 (third-smallest sequences).

%K nonn

%O 1,1

%A _Jacques Tramu_, Jun 25 2008

%E More terms from _Michel Marcus_, Oct 04 2018