This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140333 Triangle T(n,k) with the coefficient [x^k] (n+1)!* C(n,x), in row n, column k, where C(.,.) are the Bernoulli twin number polynomials of A129378. 3
 1, -1, 2, -2, 0, 6, -4, -12, 12, 24, -4, -60, -60, 120, 120, 24, -120, -720, -240, 1080, 720, 120, 840, -2520, -8400, 0, 10080, 5040, -960, 6720, 20160, -47040, -100800, 20160, 100800, 40320, -12096, -60480, 241920, 423360 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The terms at x=0 define the Bernoulli twin numbers, C(n,0)=C(n) = A129826(n)/(n+1)! . Because the C(n,x) are derived from the Bernoulli polynomials B(n,x) via a binomial transformation and because the odd-indexed Bernoulli numbers are (essentially) zero, the following sum rules for the C(n) emerge (partially in Umbral notation): For odd C(n): C(2n)=(C-1)^(2n-1), n > 1, C(2n) disappears; example: C(4)=C(4)-3C(3)+3C(2)-C(1). 0r for C(2n+1): (C-1)^2n=0, n >0; example: C(1)-4C(2)+6C(3)-4C(4)+C(5)=0. With positive coefficients, table 1, 2; 2, 2, 3; 3, 2, 3, 6; 4, 2, 3, 6, 30; 5, 2, 3, 6, 30, -30; 6, 2, 3, 6, 30, -30, -42; gives C(n). Example: 3C(0)+2C(1)+3C(2)+6C(3)=0. See -A051717(n+1), Bernoulli twin numbers denominators, with from 30 opposite twin. LINKS EXAMPLE 1;    C(0,x) = 1 -1, 2;    C(1,x) = -1/2+x -2, 0, 6;       C(2,x) = -1/3+x^2 -4, -12, 12, 24;      C(3,x) = -1/6 -x/2 +x^2/2 +x^3 -4, -60, -60, 120, 120; MAPLE C := proc(n, x) if n =0 then 1; else add( binomial(n-1, j-1)*bernoulli(j, x), j=1..n) ; expand(%) ; end if; end proc: A140333 := proc(n, k) (n+1)!*C(n, x) ; coeftayl(%, x=0, k) ; end proc: # R. J. Mathar, Jun 27 2011 CROSSREFS Cf. A129378. Sequence in context: A185896 A076256 A127467 * A182062 A219859 A168615 Adjacent sequences:  A140330 A140331 A140332 * A140334 A140335 A140336 KEYWORD sign,less,uned,tabl AUTHOR Paul Curtz, May 28 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .