login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140256 Triangle read by columns: Column k is A014963 aerated with groups of (k-1) zeros. 7
1, 2, 1, 3, 0, 1, 2, 2, 0, 1, 5, 0, 0, 0, 1, 1, 3, 2, 0, 0, 1, 7, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, 3, 0, 3, 0, 0, 0, 0, 0, 1, 1, 5, 0, 0, 2, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 0, 2, 0, 0, 0, 0, 0, 1, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If the row number n is prime, the row consists of T(n,1)=n followed by n-2 zeros and followed by T(n,n)=1.

Similar to A138618.

Row products of nonzero terms in row n, equals n. - Mats Granvik, May 22 2016

LINKS

Table of n, a(n) for n=1..105.

T. Tao, Simons Lecture I: Structure and randomness in Fourier analysis and number theory.

Wikipedia, Fundamental theorem of arithmetic.

FORMULA

T(n,k) = A014963(n/k) = A014963(A126988(n,k)) if k|n, T(n,k)=0 otherwise. 1 <= k <= n.

From Mats Granvik, Apr 10 2016, May 22 2016: (Start)

Limit as s -> 1 of the recurrence: Ts(n, k) = if k = 1 then zeta(s)*(1 - 1/n^(s - 1)) -Sum_{i=2..n} Ts(n, i)/(i)^(s - 1) else if n mod k = 0 then Ts(n/k, 1) else 0 else 0.

For n not equal to k: Limit as s -> 1 of the recurrence: Ts(n, k) = if k = 1 then zeta(s) -Sum_{i=2..n} Ts(n, i)/i^(s - 1) else if n mod k = 0 then Ts(n/k, 1) else 0 else 0.

Limit as s -> 1 of the recurrence: Ts(n, k) = if k = 1 then log(n) -Sum_{i=2..n} Ts(n, i)/i^(s - 1) else if n mod k = 0 then Ts(n/k, 1) else 0 else 0. (End)

[The above sentences need a lot of work!  Parentheses might help. - N. J. A. Sloane, Mar 14 2017]

EXAMPLE

First few rows of the triangle are:

   1;

   2, 1;

   3, 0, 1;

   2, 2, 0, 1;

   5, 0, 0, 0, 1;

   1, 3, 2, 0, 0, 1;

   7, 0, 0, 0, 0, 0, 1;

   2, 2, 0, 2, 0, 0, 0, 1;

   3, 0, 3, 0, 0, 0, 0, 0, 1;

   1, 5, 0, 0, 2, 0, 0, 0, 0, 1;

  11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;

   1, 1, 2, 3, 0, 2, 0, 0, 0, 0, 0, 1;

  ...

Column 2 = (1, 0, 2, 0, 3, 0, 2, 0, 5, 0, 1, 0, 7, ...).

MATHEMATICA

t[n_, k_] /; Divisible[n, k] := Exp[ MangoldtLambda[n/k] ]; t[_, _] = 0; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Nov 28 2013 *)

(* recurrence *)

Clear[t, s, n, k, z, nn]; z = 1; nn = 14; t[n_, k_] := t[n, k] = If[k == 1, Zeta[s]*(1 - 1/n^(s - 1)) -Sum[t[n, i]/i^(s - 1), {i, 2, n}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; A = Table[Table[Limit[t[n, k], s -> z], {k, 1, n}], {n, 1, nn}]; Flatten[Exp[A]*Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Apr 09 2016, May 22 2016 *)

PROG

(Excel) =if(row()>=column(); if(mod(row(); column())=0; lookup(roundup(row()/column(); 0); A000027; A014963); 0); "")

CROSSREFS

Cf. A140255 (row sums), A014963.

Row products without the zero terms produce A000027. [Mats Granvik, Oct 08 2009]

Sequence in context: A182740 A228786 A140699 * A126206 A119709 A253556

Adjacent sequences:  A140253 A140254 A140255 * A140257 A140258 A140259

KEYWORD

nonn,tabl

AUTHOR

Gary W. Adamson and Mats Granvik, May 16 2008, Jun 11 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 01:08 EST 2017. Contains 295936 sequences.