login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140107 a(n) = binomial(n+3, 3)*7^n. 7
1, 28, 490, 6860, 84035, 941192, 9882516, 98825160, 951192165, 8877793540, 80787921214, 719746934452, 6297785676455, 54257845827920, 461191689537320, 3874010192113488, 32202709721943369, 265198785945415980 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

With a different offset, number of n-permutations (n=4) of 8 objects: s, t, u, v, w, z, x, y with repetition allowed, containing exactly three u's.

uuus, uusu, usuu, suuu,

uuut, uutu, utuu, tuuu,

uuuv, uuvu, uvuu, vuuu,

uuuw, uuwu, uwuu, wuuu,

uuuz, uuzu, uzuu, zuuu,

uuux, uuxu, uxuu, xuuu,

uuuy, uuyu, uyuu, yuuu

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..400

Index entries for linear recurrences with constant coefficients, signature (28, -294, 1372, -2401).

FORMULA

From R. J. Mathar, Jun 03 2009: (Start)

a(n) = 28*a(n-1) - 294*a(n-2) + 1372*a(n-3) - 2401*a(n-4).

G.f.: 1/(7*x-1)^4. (End)

MAPLE

seq(binomial(n+3, 3)*7^n, n=0..26);

MATHEMATICA

Table[Binomial[n+3, 3]7^n, {n, 0, 20}] (* or *) LinearRecurrence[{28, -294, 1372, -2401}, {1, 28, 490, 6860}, 20] (* Harvey P. Dale, Jun 21 2016 *)

PROG

(Sage) [lucas_number2(n, 7, 0)*binomial(n, 3)/7^3for n in xrange(3, 21)] # Zerinvary Lajos, Mar 13 2009

(MAGMA) [7^n* Binomial(n+3, 3): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011

(PARI) a(n)=binomial(n+3, 3)*7^n \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Sequence in context: A223997 A263949 A240463 * A028170 A211677 A076172

Adjacent sequences:  A140104 A140105 A140106 * A140108 A140109 A140110

KEYWORD

nonn,easy

AUTHOR

Zerinvary Lajos, Jun 03 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 19:58 EDT 2019. Contains 323576 sequences. (Running on oeis4.)