login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140102 Term-by-term differences of A140101 and A140100; also, equals the complement of A140103, which is the term-by-term sums of A140101 and A140100, where A140101 is the complement of A140100. 15
0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87, 88, 89, 90, 92, 93 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..50000, Sep 13 2016 (First 1001 terms from Reinhard Zumkeller)

F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.

N. J. A. Sloane, Maple program for A140100, A140101, A140102, A140103

FORMULA

a(n) = A140101(n) - A140100(n).

Theorem: the limit of A140103(n)/A140102(n) = t^2 = 3.38297576...

where the limit of A140101(n)/A140100(n) = t = 1.839286755...

and t = tribonacci constant satisfies: t^3 = 1 + t + t^2.

MAPLE

See link.

MATHEMATICA

nmax = 100; y[0] = 0; x[1] = 1; y[1] = 2; x[n_] := x[n] = For[yn = y[n-1] + 1, True, yn++, For[xn = x[n-1] + 1, xn < yn, xn++, xx = Array[x, n-1]; yy = Array[y, n-1]; If[FreeQ[xx, xn | yn] && FreeQ[yy, xn | yn] && FreeQ[yy - xx, yn - xn] && FreeQ[yy + xx, yn - xn], y[n] = yn; Return[xn]]]];

Do[x[n], {n, 1, nmax}];

Join[{0}, yy - xx] (* Jean-Fran├žois Alcover, Aug 01 2018 *)

PROG

(PARI) {X=[1]; Y=[2]; D=[1]; S=[3]; print1(Y[1]-X[1]", "); for(n=1, 100, for(j=2, 2*n, if(setsearch(Set(concat(X, Y)), j)==0, Xt=concat(X, j); for(k=j+1, 3*n, if(setsearch(Set(concat(Xt, Y)), k)==0, if(setsearch(Set(concat(D, S)), k-j)==0, if(setsearch(Set(concat(D, S)), k+j)==0, X=Xt; Y=concat(Y, k); D=concat(D, k-j); S=concat(S, k+j); print1(Y[ #X]-X[ #Y]", "); break); break))))))}

CROSSREFS

Cf. A140103 (complement); A140100, A140101; A058265.

For first differences of A140100, A140101, A140102, A140103 see A305392, A305374, A305393, A305394.

Sequence in context: A023733 A154112 A039101 * A288866 A084437 A037083

Adjacent sequences:  A140099 A140100 A140101 * A140103 A140104 A140105

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 04 2008

EXTENSIONS

Terms computed by Reinhard Zumkeller.

Offset and initial term changed by N. J. A. Sloane, Oct 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 17:04 EDT 2020. Contains 337265 sequences. (Running on oeis4.)