%I #16 Sep 08 2022 08:45:34
%S 101,173,293,461,677,941,1613,1949,2141,2309,2477,2789,3461,3533,3797,
%T 3989,4133,4157,4373,4637,5309,5381,5477,5717,5981,6173,6221,7013,
%U 7229,7829,7853,8069,8741,8861,9173,9341,9413,9533,9677,10181,10589
%N Primes of the form 24x^2+77y^2.
%C Discriminant=-7392. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A140037/b140037.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {101, 173, 293, 437, 461, 629, 677, 941, 965, 1349, 1469, 1517, 1613, 1685, 1781} (mod 1848).
%t QuadPrimes2[24, 0, 77, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(12000) | p mod 1848 in {101, 173, 293, 437, 461, 629, 677, 941, 965, 1349, 1469, 1517, 1613, 1685, 1781} ]; // _Vincenzo Librandi_, Aug 06 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008