login
A140033
Primes of the form 8x^2+8xy+233y^2.
1
233, 281, 569, 809, 953, 1289, 1481, 1913, 2081, 2129, 2153, 2417, 2657, 2801, 2969, 3137, 3329, 3593, 3761, 3929, 4001, 4649, 4817, 5441, 5849, 6113, 6353, 6833, 7193, 7457, 7673, 8513, 8681, 9041, 9137, 9209, 9473, 9521, 10193, 10313
OFFSET
1,1
COMMENTS
Discriminant=-7392. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {65, 233, 281, 305, 569, 809, 953, 1073, 1121, 1289, 1481, 1625, 1649, 1745, 1817} (mod 1848).
MATHEMATICA
QuadPrimes2[8, -8, 233, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(12000) | p mod 1848 in {65, 233, 281, 305, 569, 809, 953, 1073, 1121, 1289, 1481, 1625, 1649, 1745, 1817} ]; // Vincenzo Librandi, Aug 06 2012
CROSSREFS
Sequence in context: A139652 A126979 A127340 * A142182 A105981 A160574
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved