login
Primes of the form 35x^2+39y^2.
1

%I #16 Sep 08 2022 08:45:34

%S 179,191,491,599,659,911,1031,1439,1499,1871,2339,2531,2591,3119,3299,

%T 3371,3539,3719,3851,4211,4391,5279,5399,5639,5651,6491,6659,6899,

%U 6959,7151,7211,7331,8219,8831,8999,9311,9851,10091,10271,10739,10859

%N Primes of the form 35x^2+39y^2.

%C Discriminant=-5460. See A139827 for more information.

%H Vincenzo Librandi and Ray Chandler, <a href="/A140026/b140026.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%F The primes are congruent to {179, 191, 491, 599, 659, 779, 911, 1031, 1199, 1271, 1439, 1499, 1691, 1751, 1871, 2279, 2291, 2339, 2531, 2591, 2759, 3119, 3299, 3371, 3431, 3539, 3719, 3851, 4211, 4391, 4559, 4631, 4811, 4859, 5279, 5399} (mod 5460).

%t QuadPrimes2[35, 0, 39, 10000] (* see A106856 *)

%o (Magma) [ p: p in PrimesUpTo(13000) | p mod 5460 in {179, 191, 491, 599, 659, 779, 911, 1031, 1199, 1271, 1439, 1499, 1691, 1751, 1871, 2279, 2291, 2339, 2531, 2591, 2759, 3119, 3299, 3371, 3431, 3539, 3719, 3851, 4211, 4391, 4559, 4631, 4811, 4859, 5279, 5399} ]; // _Vincenzo Librandi_, Aug 06 2012

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 02 2008