login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes of the form 5x^2+273y^2.
1

%I #16 Sep 08 2022 08:45:34

%S 5,293,353,593,773,1097,1217,1553,1697,2273,2477,2693,2777,2897,2957,

%T 4217,4373,4457,4493,4877,4973,5297,5393,5813,5897,6053,6173,7013,

%U 7577,7937,8237,8273,8573,9173,9497,9677,9833,10337,10433,10457,10853

%N Primes of the form 5x^2+273y^2.

%C Discriminant=-5460. See A139827 for more information.

%H Vincenzo Librandi and Ray Chandler, <a href="/A140016/b140016.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%F The primes are congruent to {5, 293, 353, 437, 593, 713, 773, 1097, 1133, 1217, 1553, 1697, 1853, 2033, 2117, 2273, 2477, 2537, 2693, 2777, 2813, 2897, 2957, 3113, 3317, 3713, 3737, 4037, 4217, 4373, 4457, 4493, 4877, 4973, 4997, 5297, 5393} (mod 5460).

%t QuadPrimes2[5, 0, 273, 10000] (* see A106856 *)

%o (Magma) [ p: p in PrimesUpTo(12000) | p mod 5460 in {5, 293, 353, 437, 593, 713, 773, 1097, 1133, 1217, 1553, 1697, 1853, 2033, 2117, 2273, 2477, 2537, 2693, 2777, 2813, 2897, 2957, 3113, 3317, 3713, 3737, 4037, 4217, 4373, 4457, 4493, 4877, 4973, 4997, 5297, 5393} ]; // _Vincenzo Librandi_, Aug 05 2012

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 02 2008