login
A140008
Primes of the form 24x^2+55y^2.
2
79, 151, 271, 439, 919, 1231, 1399, 1471, 1759, 1999, 2239, 2551, 2719, 2791, 3079, 3319, 3511, 3559, 4111, 4231, 4639, 4759, 4831, 5431, 6079, 6151, 6199, 6679, 6871, 6991, 7039, 8191, 8311, 8599, 8719, 8839, 9151, 9319, 9391, 9511, 9631
OFFSET
1,1
COMMENTS
Discriminant = -5280. See A139827 for more information.
Also primes of the form 39x^2+36xy+76y^2. See A140633. - T. D. Noe, May 19 2008
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {79, 151, 271, 391, 439, 679, 799, 871, 919, 1231} (mod 1320).
MATHEMATICA
QuadPrimes2[24, 0, 55, 10000] (* see A106856 *)
PROG
(Magma) [p: p in PrimesUpTo(12000) | p mod 1320 in [79, 151, 271, 391, 439, 679, 799, 871, 919, 1231]]; // Vincenzo Librandi, Aug 04 2012
CROSSREFS
Sequence in context: A029703 A142082 A031890 * A142159 A046050 A044330
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved