%I #18 Sep 08 2022 08:45:34
%S 71,191,311,599,719,839,911,1439,1511,1871,2039,2399,2711,3191,3359,
%T 3719,4079,4271,4679,4799,4871,5039,5351,5399,5471,5591,5879,6359,
%U 6719,6791,6911,7151,8039,8111,8231,8831,8999,9311,9431,9551,9791
%N Primes of the form 20x^2+20xy+71y^2.
%C Discriminant = -5280. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A140007/b140007.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {71, 119, 191, 311, 551, 599, 719, 839, 911, 1079} (mod 1320).
%t QuadPrimes2[20, -20, 71, 10000] (* see A106856 *)
%o (Magma) [p: p in PrimesUpTo(12000) | p mod 1320 in [71, 119, 191, 311, 551, 599, 719, 839, 911, 1079]]; // _Vincenzo Librandi_, Aug 04 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008