%I #16 Sep 08 2022 08:45:34
%S 71,191,239,359,431,599,911,1031,1439,1871,2039,2111,2591,2711,2879,
%T 3119,3719,4271,4391,4799,5231,5279,5399,5471,5639,6311,6791,6911,
%U 6959,7079,7151,7919,8831,8999,9311,9431,9479,9839,10151,10271,11159
%N Primes of the form 15x^2+56y^2.
%C Discriminant=-3360. See A139827 for more information.
%C Also primes of the forms 39x^2+12xy+44y^2 and 36x^2+12xy+71y^2. See A140633. - _T. D. Noe_, May 19 2008
%H Vincenzo Librandi and Ray Chandler, <a href="/A139991/b139991.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {71, 191, 239, 359, 431, 599} (mod 840).
%t QuadPrimes2[15, 0, 56, 10000] (* see A106856 *)
%o (Magma) [p: p in PrimesUpTo(12000) | p mod 840 in [71, 191, 239, 359, 431, 599]]; // _Vincenzo Librandi_, Aug 03 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008