%I #17 Sep 08 2022 08:45:34
%S 211,331,379,499,571,739,1051,1171,1579,2011,2179,2251,2731,2851,3019,
%T 3259,3571,3691,3739,3931,4099,5419,5779,6091,6211,6379,6451,6619,
%U 7219,7459,8059,8731,8779,8971,9619,9739,9811,10459,10651,11131,11251
%N Primes of the form 4x^2+4xy+211y^2.
%C Discriminant=-3360. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A139985/b139985.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {211, 331, 379, 499, 571, 739} (mod 840).
%t QuadPrimes2[4, -4, 211, 10000] (* see A106856 *)
%o (Magma) [p: p in PrimesUpTo(12000) | p mod 840 in [211, 331, 379, 499, 571, 739]]; // _Vincenzo Librandi_, Aug 03 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008