login
A139980
Primes of the form 8x^2+8xy+97y^2.
1
97, 113, 193, 257, 337, 433, 673, 857, 953, 977, 1097, 1153, 1193, 1433, 1553, 1777, 1913, 2017, 2273, 2377, 2393, 2473, 2617, 2713, 2777, 2833, 2953, 3137, 3257, 3433, 3457, 3593, 3793, 3833, 4057, 4217, 4297, 4513, 4657, 4673, 4817, 4993
OFFSET
1,1
COMMENTS
Discriminant=-3040. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {33, 97, 113, 193, 217, 257, 297, 337, 393, 417, 433, 497, 553, 673, 697, 713, 737, 753, 793, 857, 873, 953, 977, 1017, 1057, 1097, 1153, 1177, 1193, 1257, 1313, 1433, 1457, 1473, 1497, 1513, 1553, 1617, 1633, 1713, 1737, 1777, 1817, 1857, 1913, 1937, 1953, 2017, 2073, 2193, 2217, 2233, 2257, 2273, 2313, 2377, 2393, 2473, 2497, 2537, 2577, 2617, 2673, 2697, 2713, 2777, 2833, 2953, 2977, 2993, 3017, 3033} (mod 3040).
MATHEMATICA
QuadPrimes2[8, -8, 97, 10000] (* see A106856 *)
PROG
(Magma) [p: p in PrimesUpTo(6000) | p mod 3040 in [33, 97, 113, 193, 217, 257, 297, 337, 393, 417, 433, 497, 553, 673, 697, 713, 737, 753, 793, 857, 873, 953, 977, 1017, 1057, 1097, 1153, 1177, 1193, 1257, 1313, 1433, 1457, 1473, 1497, 1513, 1553, 1617, 1633, 1713, 1737, 1777, 1817, 1857, 1913, 1937, 1953, 2017, 2073, 2193, 2217, 2233, 2257, 2273, 2313, 2377, 2393, 2473, 2497, 2537, 2577, 2617, 2673, 2697, 2713, 2777, 2833, 2953, 2977, 2993, 3017, 3033]]; // Vincenzo Librandi, Aug 03 2012
CROSSREFS
Sequence in context: A160032 A136477 A078494 * A140830 A038133 A144325
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved