login
A139977
Primes of the form 4x^2+4xy+191y^2.
2
191, 199, 239, 271, 311, 359, 479, 631, 719, 919, 1031, 1151, 1279, 1559, 1759, 1831, 1871, 1879, 1999, 2039, 2239, 2399, 2551, 2591, 2671, 2791, 2999, 3079, 3391, 3559, 3671, 3911, 3919, 4111, 4159, 4519, 4679, 4751, 4759, 4799, 4831
OFFSET
1,1
COMMENTS
Discriminant=-3040. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {39, 111, 119, 159, 191, 199, 239, 271, 311, 351, 359, 391, 479, 511, 519, 631, 671, 719, 799, 871, 879, 919, 951, 959, 999, 1031, 1071, 1111, 1119, 1151, 1239, 1271, 1279, 1391, 1431, 1479, 1559, 1631, 1639, 1679, 1711, 1719, 1759, 1791, 1831, 1871, 1879, 1911, 1999, 2031, 2039, 2151, 2191, 2239, 2319, 2391, 2399, 2439, 2471, 2479, 2519, 2551, 2591, 2631, 2639, 2671, 2759, 2791, 2799, 2911, 2951, 2999} (mod 3040).
MATHEMATICA
QuadPrimes2[4, -4, 191, 10000] (* see A106856 *)
PROG
(Magma) [p: p in PrimesUpTo(6000) | p mod 3040 in [39, 111, 119, 159, 191, 199, 239, 271, 311, 351, 359, 391, 479, 511, 519, 631, 671, 719, 799, 871, 879, 919, 951, 959, 999, 1031, 1071, 1111, 1119, 1151, 1239, 1271, 1279, 1391, 1431, 1479, 1559, 1631, 1639, 1679, 1711, 1719, 1759, 1791, 1831, 1871, 1879, 1911, 1999, 2031, 2039, 2151, 2191, 2239, 2319, 2391, 2399, 2439, 2471, 2479, 2519, 2551, 2591, 2631, 2639, 2671, 2759, 2791, 2799, 2911, 2951, 2999]]; // Vincenzo Librandi, Aug 03 2012
CROSSREFS
Sequence in context: A115016 A160784 A139650 * A141868 A059244 A136068
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved