login
A139973
Primes of the form 8x^2+8xy+67y^2.
1
67, 83, 163, 227, 307, 587, 643, 683, 787, 827, 947, 1123, 1163, 1307, 1523, 1627, 1723, 1747, 1787, 1867, 1987, 2203, 2243, 2267, 2347, 2683, 2803, 3083, 3187, 3203, 3307, 3323, 3347, 3547, 3803, 3907, 3947, 4243, 4283, 4363, 4483, 4643
OFFSET
1,1
COMMENTS
Discriminant=-2080. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {67, 83, 123, 163, 187, 203, 227, 267, 307, 323, 427, 483} (mod 520).
MATHEMATICA
QuadPrimes2[8, -8, 67, 10000] (* see A106856 *)
PROG
(Magma)[ p: p in PrimesUpTo(6000) | p mod 520 in [67, 83, 123, 163, 187, 203, 227, 267, 307, 323, 427, 483]]; // Vincenzo Librandi, Aug 02 2012
CROSSREFS
Sequence in context: A091490 A091075 A288409 * A118741 A217115 A130058
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved