%I #16 Sep 08 2022 08:45:34
%S 73,97,137,193,353,457,577,593,617,977,1033,1097,1217,1553,1657,1697,
%T 1753,1913,2017,2113,2137,2153,2273,2377,2593,2633,2657,2777,2897,
%U 2953,3217,3257,3313,3593,3673,3697,3833,4153,4217,4297,4337,4457
%N Primes of the form 8x^2+65y^2.
%C Discriminant=-2080. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A139972/b139972.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {33, 57, 73, 97, 137, 177, 193, 297, 353, 457, 473, 513} (mod 520).
%t QuadPrimes2[8, 0, 65, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(6000) | p mod 520 in [33, 57, 73, 97, 137, 177, 193, 297, 353, 457, 473, 513]]; // _Vincenzo Librandi_, Aug 02 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008