login
A139962
Primes of the form 23x^2+22xy+23y^2.
2
23, 71, 167, 311, 431, 479, 503, 719, 743, 839, 887, 911, 983, 1031, 1151, 1319, 1367, 1439, 1559, 1847, 2063, 2111, 2207, 2351, 2543, 2591, 2663, 2879, 2927, 2999, 3023, 3167, 3191, 3359, 3407, 3767, 4007, 4391, 4583, 4703, 4799, 4919
OFFSET
1,1
COMMENTS
Discriminant=-1632. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {23, 71, 95, 143, 167, 215, 311, 335} (mod 408).
MATHEMATICA
Union[QuadPrimes2[23, 22, 23, 10000], QuadPrimes2[23, -22, 23, 10000]] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(5000) | p mod 408 in [23, 71, 95, 143, 167, 215, 311, 335]]; // Vincenzo Librandi, Aug 02 2012
CROSSREFS
Sequence in context: A319052 A154619 A142405 * A248877 A321356 A139878
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved