%I #16 Sep 08 2022 08:45:34
%S 43,73,193,283,307,337,457,523,547,673,787,937,1033,1297,1627,1657,
%T 1723,1777,1867,1987,1993,2593,2617,2683,2713,2833,2857,3163,3187,
%U 3307,3313,3643,3673,3907,4003,4153,4177,4243,4297,4363,4483,4507
%N Primes of the form 10x^2+33y^2.
%C Discriminant=-1320. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A139932/b139932.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {43, 73, 193, 217, 283, 307, 337, 403, 457, 523, 547, 667, 673, 787, 937, 1003, 1033, 1267, 1273, 1297} (mod 1320).
%t QuadPrimes2[10, 0, 33, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(6000) | p mod 1320 in [43, 73, 193, 217, 283, 307, 337, 403, 457, 523, 547, 667, 673, 787, 937, 1003, 1033, 1267, 1273, 1297]]; // _Vincenzo Librandi_, Aug 02 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008