%I #16 Sep 08 2022 08:45:34
%S 61,79,109,151,271,349,439,541,919,1069,1231,1381,1399,1429,1471,1669,
%T 1759,1789,1861,1999,2221,2239,2389,2551,2719,2749,2791,3079,3109,
%U 3181,3229,3319,3511,3541,3559,3709,4021,4111,4231,4549,4639,4759
%N Primes of the form 6x^2+55y^2.
%C Discriminant=-1320. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A139931/b139931.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {61, 79, 109, 151, 271, 349, 391, 439, 469, 541, 589, 679, 799, 871, 901, 919, 1069, 1141, 1231, 1261} (mod 1320).
%t QuadPrimes2[6, 0, 55, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(6000) | p mod 1320 in [61, 79, 109, 151, 271, 349, 391, 439, 469, 541, 589, 679, 799, 871, 901, 919, 1069, 1141, 1231, 1261]]; // _Vincenzo Librandi_, Aug 02 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008