login
A139918
Primes of the form 8x^2+8xy+37y^2.
1
37, 53, 197, 277, 317, 373, 557, 613, 653, 757, 877, 1093, 1117, 1213, 1373, 1453, 1493, 1597, 1733, 1877, 1933, 1997, 2053, 2213, 2237, 2293, 2333, 2437, 2557, 2797, 2837, 3413, 3557, 3613, 3637, 3677, 3733, 3917, 4013, 4253, 4397, 4517
OFFSET
1,1
COMMENTS
Discriminant=-1120. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {37, 53, 93, 197, 253, 277} (mod 280).
MATHEMATICA
QuadPrimes2[8, -8, 37, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(6000) | p mod 280 in [37, 53, 93, 197, 253, 277]]; // Vincenzo Librandi, Aug 01 2012
CROSSREFS
Sequence in context: A225214 A141166 A242930 * A289510 A108273 A045223
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved