OFFSET
1,1
COMMENTS
Discriminant = -760. See A139827 for more information.
10*x^2 + 19 produces 19 consecutive primes belonging to A028416 for x from 0 to 18. - Davide Rotondo, Jun 13 2022
Primes p such that Kronecker(2,p) <= 0, Kronecker(5,p) >= 0 and Kronecker(-19,p) <= 0. - Jianing Song, Jun 13 2022
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {19, 21, 29, 51, 59, 69, 91, 109, 141, 179, 181, 189, 211, 219, 221, 259, 261, 269, 299, 331, 341, 371, 379, 411, 421, 451, 459, 469, 509, 531, 611, 621, 629, 659, 661, 699, 749} (mod 760). [For the other direction, primes satisfying this congruence are terms of this sequence since 760 is a term in A003171. - Jianing Song, Jun 13 2022]
MATHEMATICA
QuadPrimes2[10, 0, 19, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(3000) | p mod 760 in {19, 21, 29, 51, 59, 69, 91, 109, 141, 179, 181, 189, 211, 219, 221, 259, 261, 269, 299, 331, 341, 371, 379, 411, 421, 451, 459, 469, 509, 531, 611, 621, 629, 659, 661, 699, 749}]; // Vincenzo Librandi, Jul 30 2012
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved