login
A139882
Primes of the form 3x^2+59y^2.
1
3, 59, 71, 107, 167, 239, 251, 263, 311, 359, 383, 479, 491, 599, 647, 743, 827, 911, 947, 971, 1019, 1031, 1091, 1103, 1187, 1259, 1307, 1319, 1451, 1487, 1511, 1523, 1559, 1583, 1619, 1667, 1787, 1811, 1823, 1907, 2027, 2063, 2087, 2111, 2243
OFFSET
1,1
COMMENTS
Discriminant=-708. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {3, 35, 59, 71, 95, 107, 119, 143, 167, 203, 239, 251, 263, 287, 299, 311, 323, 359, 371, 383, 395, 407, 479, 491, 551, 599, 611, 635, 647, 671, 695} (mod 708).
MATHEMATICA
QuadPrimes2[3, 0, 59, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(6000) | p mod 708 in {3, 35, 59, 71, 95, 107, 119, 143, 167, 203, 239, 251, 263, 287, 299, 311, 323, 359, 371, 383, 395, 407, 479, 491, 551, 599, 611, 635, 647, 671, 695}]; // Vincenzo Librandi, Jul 30 2012
CROSSREFS
Sequence in context: A184950 A100611 A359069 * A139874 A155032 A107212
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved