login
A139868
Primes of the form 3x^2 + 55y^2.
1
3, 67, 103, 163, 223, 367, 463, 487, 643, 727, 823, 883, 907, 1087, 1123, 1303, 1423, 1483, 1543, 1567, 1747, 1783, 2083, 2143, 2203, 2347, 2467, 2707, 2803, 2887, 3067, 3463, 3547, 3727, 3943, 4027, 4327, 4423, 4447, 4603, 4723, 4783, 4987
OFFSET
1,1
COMMENTS
Discriminant = -660. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {3, 67, 103, 163, 223, 247, 367, 427, 463, 487, 643} (mod 660).
MATHEMATICA
QuadPrimes2[3, 0, 55, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(6000) | p mod 660 in {3, 67, 103, 163, 223, 247, 367, 427, 463, 487, 643}]; // Vincenzo Librandi, Jul 30 2012
(PARI) list(lim)=my(v=List(), w, t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\55), if(isprime(t=w+55*y^2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Mar 07 2017
CROSSREFS
Sequence in context: A105443 A065425 A096482 * A110716 A142035 A142926
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved