login
A139807
Number of distinct values of Product_{p is a part of P} (p-1) when P ranges over all partitions of n.
1
1, 2, 2, 3, 3, 5, 4, 8, 7, 11, 11, 17, 16, 25, 24, 35, 35, 50, 49, 70, 69, 94, 96, 129, 129, 172, 174, 227, 232, 298, 303, 389, 396, 498, 513, 639, 655, 814, 834, 1025, 1057, 1287, 1326, 1610, 1657, 1995, 2063, 2469, 2548, 3039, 3138, 3720, 3851, 4539, 4696, 5523
OFFSET
1,2
FORMULA
Conjecture: G.f. is x/(1-x)+((1-x^12)/((1-x^2)*(1-x^5)))*(1/Product_{k>0} (1-x^(prime(k)+1))), i.e. a(n) = 1 + number of partitions of n into parts of the form p+1, p a prime, excluding 12 and including 2 and 5. Added May 28 2008: The conjecture is correct! See the link. - Max Alekseyev
MAPLE
A139807 := proc(n) local g, i, p ; g := (1-x^12)/(1-x^2)/(1-x^5) ; for i from 1 do p := ithprime(i) ; if p > n then break ; fi ; g := taylor(g/(1-x^(p+1)), x=0, n+1) ; od: coeftayl( g+1/(1-x), x=0, n) ; end: seq(A139807(n), n=1..80) ; # R. J. Mathar, May 29 2008
CROSSREFS
Cf. A034891.
Sequence in context: A351004 A114328 A097366 * A308465 A276119 A167755
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, May 23 2008
EXTENSIONS
More terms from R. J. Mathar, May 29 2008
STATUS
approved