Date: Sat, 24 May 2008 14:43:21 +0200 From: Richard Mathar %N A139768 Numbers n such that (10^(n+1) mod 9^(n+1))/(10^n mod 9^n)=10, or A139739(n+1)/A139739(n)=10. %C A139768 Also, this is the set of numbers n such that 9*floor((10/9)^(n+1))==10*floor((10/9)^n). Here is a proof: Proof: 9*floor[ 10^(n+1)/9^(n+1)] = 10 floor [ 10^n/9^n] replace the floor[...] by a division with explicit remainder : 9*[ 10^(n+1)/9^(n+1) - {10^(n+1) mod 9^(n+1)}/ 9^(n+1)] = 10 [ 10^n/9^n - {10^n mod 9^n}/9^n] Divide both sides through 9 10^(n+1)/9^(n+1) - {10^(n+1) mod 9^(n+1)}/ 9^(n+1) = (10/9) [ 10^n/9^n - {10^n mod 9^n}/9^n] Multiply both sides by 9^(n+1) 10^(n+1) - {10^(n+1) mod 9^(n+1)} = 10 [ 10^n - {10^n mod 9^n}] expand right hand side 10^(n+1) - {10^(n+1) mod 9^(n+1)} = 10^(n+1) - 10 {10^n mod 9^n}] eliminate common terms, switch sign {10^(n+1) mod 9^(n+1)} = 10 {10^n mod 9^n}] Divide through {10^(n+1) mod 9^(n+1)}/{10^n mod 9^n} = 10 q.e.d, the original definition.