login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139711 A number n is included if the sum of (the largest divisor of n that is <= sqrt(n)) and (the smallest divisor of n that is >= sqrt(n)) is even. 2
1, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 21, 23, 24, 25, 27, 29, 31, 32, 33, 35, 36, 37, 39, 41, 43, 45, 47, 48, 49, 51, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 69, 71, 73, 75, 77, 79, 80, 81, 83, 85, 87, 89, 91, 93, 95, 96, 97, 99, 100, 101, 103, 105, 107, 109, 111, 112 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

All odd positive integers and all perfect squares are included in this sequence.

A139710 contains all positive integers not in this sequence and vice versa.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

FORMULA

{n: A000035(A033676(n) + A033677(n)) = 0}. - R. J. Mathar, May 11 2008

EXAMPLE

The divisors of 24 are 1,2,3,4,6,8,12,24. The middle 2 divisors are 4 and 6. The sum of these is 10, which is even. So 24 is included in the sequence.

MAPLE

A033676 := proc(n) local d ; for d from floor(sqrt(n)) to 1 by -1 do if n mod d = 0 then RETURN(d) ; fi ; od: end: A033677 := proc(n) n/A033676(n) ; end: isA139711 := proc(n) RETURN ( ( A033676(n)+A033677(n) ) mod 2 = 0 ) ; end: for n from 1 to 300 do if isA139711(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, May 11 2008

MATHEMATICA

evdQ[n_]:=Module[{divs=Divisors[n], sr=Sqrt[n]}, EvenQ[Max[Select[divs, #<=sr&]]+Min[Select[divs, #>=sr&]]]]; Select[Range[120], evdQ] (* Harvey P. Dale, Mar 05 2012 *)

PROG

(PARI) A063655(n) = {local(d); d=divisors(n); d[(length(d)+1)\2] + d[length(d)\2+1]};

for(n=1, 120, if(A063655(n)%2==0, print1(n, ", ")) ) \\ G. C. Greubel, May 31 2019

CROSSREFS

Cf. A063655, A139710.

Sequence in context: A187885 A039065 A247786 * A214585 A196036 A081376

Adjacent sequences:  A139708 A139709 A139710 * A139712 A139713 A139714

KEYWORD

nonn

AUTHOR

Leroy Quet, Apr 30 2008

EXTENSIONS

More terms from R. J. Mathar, May 11 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 12:18 EDT 2019. Contains 328160 sequences. (Running on oeis4.)