login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139702 G.f. satisfies: x = A( x + A(x)^2 ). 13
1, -1, 4, -24, 178, -1512, 14152, -142705, 1528212, -17211564, 202460400, -2474708496, 31310415376, -408815254832, 5495451727376, -75907303147652, 1075685334980240, -15618612118252960, 232102241507321384, -3526880759915999016 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Signed version of A213591.

LINKS

Paul D. Hanna, Table of n, a(n), n=1..100.

FORMULA

Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then G(x) = G(G(x)) - x^2 = g.f. of A138740.

G.f. satisfies: A(x) = x*G(-A(x)^2/x) where G(x) = 1 + x*G(1-1/G(x))^2 is the g.f. of A212411.

G.f.: A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:

A = 1 - x*B^2;

B = A - x*C^2;

C = B - x*D^2;

D = C - x*E^2;

E = D - x*F^2; ...

G.f. satisfies: A(x) = x*exp( Sum_{n>=0} (-1)^(n+1)*[d^n/dx^n A(x)^(2n+2)/x]/(n+1)! ). [Paul D. Hanna, Dec 18 2010]

EXAMPLE

G.f.: A(x) = x - x^2 + 4*x^3 - 24*x^4 + 178*x^5 - 1512*x^6 +-...

A(x)^2 = x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 - 3572*x^7 +-...

where A(x + A(x)^2) = x.

Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then:

G(x) = x + x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+... and

G(G(x)) = x + 2*x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+...

so that G(x) = G(G(x)) - x^2 = g.f. of A138740.

Logarithmic series:

log(A(x)/x) = -A(x)^2/x + [d/dx A(x)^4/x]/2! - [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! -+...

PROG

(PARI) {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x + (A+x*O(x^n))^2)); polcoeff(A, n))}

(PARI) /* n-th Derivative: */

{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

/* G.f.: [Paul D. Hanna, Dec 18 2010] */

{a(n)=local(A=x-x^2+x*O(x^n)); for(i=1, n,

A=x*exp(sum(m=0, n, (-1)^(m+1)*Dx(m, A^(2*m+2)/x)/(m+1)!)+x*O(x^n))); polcoeff(A, n)}

CROSSREFS

Cf. A138740, A212411, A213591.

Cf. A088714, A088717, A091713, A120971, A140094, A140095.

Cf. A143426, A087949, A143435, A182969.

Sequence in context: A000309 A112914 A007846 * A213591 A243689 A168452

Adjacent sequences:  A139699 A139700 A139701 * A139703 A139704 A139705

KEYWORD

sign

AUTHOR

Paul D. Hanna, Apr 30 2008, May 20 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 07:03 EST 2014. Contains 252328 sequences.