login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139702 G.f. satisfies: x = A( x + A(x)^2 ). 13
1, -1, 4, -24, 178, -1512, 14152, -142705, 1528212, -17211564, 202460400, -2474708496, 31310415376, -408815254832, 5495451727376, -75907303147652, 1075685334980240, -15618612118252960, 232102241507321384, -3526880759915999016 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Signed version of A213591.

LINKS

Paul D. Hanna, Table of n, a(n), n=1..100.

FORMULA

Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then G(x) = G(G(x)) - x^2 = g.f. of A138740.

G.f. satisfies: A(x) = x*G(-A(x)^2/x) where G(x) = 1 + x*G(1-1/G(x))^2 is the g.f. of A212411.

G.f.: A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:

A = 1 - x*B^2;

B = A - x*C^2;

C = B - x*D^2;

D = C - x*E^2;

E = D - x*F^2; ...

G.f. satisfies: A(x) = x*exp( Sum_{n>=0} (-1)^(n+1)*[d^n/dx^n A(x)^(2n+2)/x]/(n+1)! ). [Paul D. Hanna, Dec 18 2010]

EXAMPLE

G.f.: A(x) = x - x^2 + 4*x^3 - 24*x^4 + 178*x^5 - 1512*x^6 +-...

A(x)^2 = x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 - 3572*x^7 +-...

where A(x + A(x)^2) = x.

Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then:

G(x) = x + x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+... and

G(G(x)) = x + 2*x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+...

so that G(x) = G(G(x)) - x^2 = g.f. of A138740.

Logarithmic series:

log(A(x)/x) = -A(x)^2/x + [d/dx A(x)^4/x]/2! - [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! -+...

PROG

(PARI) {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x + (A+x*O(x^n))^2)); polcoeff(A, n))}

(PARI) /* n-th Derivative: */

{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

/* G.f.: [Paul D. Hanna, Dec 18 2010] */

{a(n)=local(A=x-x^2+x*O(x^n)); for(i=1, n,

A=x*exp(sum(m=0, n, (-1)^(m+1)*Dx(m, A^(2*m+2)/x)/(m+1)!)+x*O(x^n))); polcoeff(A, n)}

CROSSREFS

Cf. A138740, A212411, A213591.

Cf. A088714, A088717, A091713, A120971, A140094, A140095.

Cf. A143426, A087949, A143435, A182969.

Sequence in context: A000309 A112914 A007846 * A213591 A243689 A168452

Adjacent sequences:  A139699 A139700 A139701 * A139703 A139704 A139705

KEYWORD

sign

AUTHOR

Paul D. Hanna, Apr 30 2008, May 20 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 11:23 EST 2016. Contains 278939 sequences.