%I #21 Sep 08 2022 08:45:33
%S 1381,1429,1621,2389,2521,3301,4729,5209,5581,5749,5821,6301,6421,
%T 6829,6841,7309,7669,8089,8269,8761,8941,9109,9181,9829,9949,10501,
%U 10789,11701,12289,12301,12541,12601,13309,13381,13441,13729,14221
%N Primes of the form x^2 + 1365*y^2.
%C Discriminant = -5460. See A139643 for more information.
%C The primes are congruent to {1, 121, 289, 361, 529, 589, 781, 841, 961, 1369, 1381, 1429, 1621, 1681, 1849, 2209, 2389, 2461, 2521, 2629, 2809, 2941, 3301, 3481, 3649, 3721, 3901, 3949, 4369, 4489, 4729, 4741, 5041, 5149, 5209, 5329} (mod 5460).
%H Vincenzo Librandi and Ray Chandler, <a href="/A139667/b139667.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi).
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t QuadPrimes2[1, 0, 1365, 10000] (* see A106856 *)
%o (Magma) k:=1365; [p: p in PrimesUpTo(15000) | NormEquation(k, p) eq true]; // _Bruno Berselli_, Jun 01 2016
%K nonn,easy
%O 1,1
%A _T. D. Noe_, Apr 29 2008