login
A139632
Expansion of chi(q) * chi(-q^5) in powers of q where chi() is a Ramanujan theta function.
5
1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 3, 4, 3, 2, 4, 5, 4, 4, 5, 6, 6, 5, 6, 8, 7, 6, 8, 11, 10, 8, 11, 13, 11, 10, 13, 16, 15, 14, 17, 20, 18, 17, 20, 24, 23, 21, 25, 31, 29, 26, 32, 37, 34, 32, 39, 44, 42, 41, 47, 54, 52, 49
OFFSET
0,13
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/4) * eta(q^2)^2 * eta(q^5) / (eta(q) * eta(q^4) * eta(q^10)) in powers of q.
Euler transform of period 20 sequence [ 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, 1, 0, 1, -1, 0, 0, 1, -1, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (640 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139631.
G.f.: Product_{k>0} (1 + x^k) / ((1 + x^(2*k)) * (1 + x^(5*k))).
a(n) = (-1)^floor((n + 1)/2) * A145705(n). - Michael Somos, Sep 07 2015
a(2*n) = A139631(n). a(2*n + 1) = A145703(n). - Michael Somos, Sep 07 2015
a(n) ~ exp(Pi*sqrt(n/10)) / (2^(5/4) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
G.f. = 1 + x + x^3 + x^4 + x^7 + x^8 + x^9 + x^10 + x^11 + 2*x^12 + x^13 + ...
G.f. = 1/q + q^3 + q^11 + q^15 + q^27 + q^31 + q^35 + q^39 + q^43 + 2*q^47 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ x^5, x^10], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
nmax = 100; CoefficientList[Series[Product[(1 + x^k) / ((1 + x^(2*k)) * (1 + x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^5 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^10 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Apr 27 2008
STATUS
approved