|
|
A139594
|
|
Number of different n X n symmetric matrices with nonnegative entries summing to 4. Also number of symmetric oriented graphs with 4 arcs on n points.
|
|
4
|
|
|
0, 1, 9, 39, 116, 275, 561, 1029, 1744, 2781, 4225, 6171, 8724, 11999, 16121, 21225, 27456, 34969, 43929, 54511, 66900, 81291, 97889, 116909, 138576, 163125, 190801, 221859, 256564, 295191, 338025, 385361, 437504, 494769, 557481, 625975, 700596
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is also the number of semistandard Young tableaux over all partitions of 4 with maximal element <= n. - Alois P. Heinz, Mar 22 2012
Starting from 1 the partial sums give A244864. - J. M. Bergot, Sep 17 2016
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
a(n) = coefficient of X^4 in 1/((1-X)^m*(1-X^2)^binomial(m,2)).
Conjecture: a(n) = (n^2*(7+5*n^2))/12. G.f.: x*(1+x)*(1+3*x+x^2)/(1-x)^5. [Colin Barker, Mar 18 2012]
|
|
EXAMPLE
|
From Michael B. Porter, Sep 18 2016: (Start)
The nine 2 X 2 matrices summing to 4 are:
4 0 3 0 2 0 1 0 0 0 2 1 1 1 0 1 0 2
0 0 0 1 0 2 0 3 0 4 1 0 1 1 1 2 2 0
(End)
|
|
MAPLE
|
dd := proc(n, m) coeftayl(1/((1-X)^m*(1-X^2)^binomial(m, 2)), X=0, n); seq(dd(4, m), m=0..N);
|
|
CROSSREFS
|
For 3 in place of 4 this gives A005900.
Row n=4 of A210391. - Alois P. Heinz, Mar 22 2012
Sequence in context: A299280 A023163 A054121 * A034263 A060929 A212143
Adjacent sequences: A139591 A139592 A139593 * A139595 A139596 A139597
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Marc A. A. van Leeuwen, Jun 12 2008
|
|
STATUS
|
approved
|
|
|
|