Contribution from Karol A. Penson, Oct 05 2009: (Start)
Integral representation as nth moment of a positive function on a positive
halfaxis (solution of the Stieltjes moment problem), in Maple notation:
a(n)=int(x^n*((1/4)*sqrt(2)*(Pi^(3/2)*2^(1/4)*hypergeom([], [1/2, 3/4],
(1/32)*x)*sqrt(x)2*Pi*hypergeom([], [3/4, 5/4], (1/32)*x)*GAMMA(3/4)*x^(3/4)
+sqrt(Pi)*GAMMA(3/4)^2*2^(1/4)*hypergeom([], [5/4, 3/2],
(1/32)*x)*x)/(Pi^(3/2)*GAMMA(3/4)*x^(5/4))), x=0..infinity), n=0,1... .
This solution may not be unique. (End)
