login
A139485
a(1)=1. For m >= 0 and 1 <= k <= 2^m, a(2^m +k) = a(k) + Sum_{j=1..2^m} a(j).
2
1, 2, 4, 5, 13, 14, 16, 17, 73, 74, 76, 77, 85, 86, 88, 89, 721, 722, 724, 725, 733, 734, 736, 737, 793, 794, 796, 797, 805, 806, 808, 809, 12961, 12962, 12964, 12965, 12973, 12974, 12976, 12977, 13033, 13034, 13036, 13037, 13045, 13046, 13048, 13049
OFFSET
1,2
COMMENTS
A139486(n) = Sum_{j=1..2^n} a(j).
FORMULA
For odd n, a(n) = Sum_{j=0..k} b(j) * A139486(j), where n = Sum_{j=0..k} b(j) * 2^j is the binary representation of n. For even n, a(n) = a(n-1) + 1. - Max Alekseyev, Oct 24 2008
PROG
(PARI) { A139485(n) = local(b); if(n%2==0, return(a(n-1)+1)); b=Vecrev(binary(n)); sum(j=1, #b, b[j]*prod(i=0, j-2, 2^i+2)) } \\ Max Alekseyev, Oct 24 2008
CROSSREFS
Cf. A139486.
Sequence in context: A281643 A102932 A128457 * A079407 A078652 A289491
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 23 2008
EXTENSIONS
More terms from Max Alekseyev, Oct 24 2008
STATUS
approved