This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139414 a(x) = if one of {4x^2 - 146x + 1373, 4x^2 - 144x + 1459, 4x^2 - 142x + 1301, 4x^2 - 140x + 1877} is prime, then pick that prime in sequence. 3
 1373, 1319, 1033, 1493, 853, 839, 593, 1093, 461, 487, 281, 821, 197, 263, 97, 677, 61, 167, 41, 661, 53, 199, 113, 773, 173, 359, 313, 1013, 421, 647, 641, 1381, 797, 1063, 1097, 1877, 1301, 1607, 2333, 1847, 1933, 2203, 2393, 3253, 2693, 3079, 3121, 4133 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The polynomials are tested in a cycle beginning with t[1 + mod [x,4]], i.e. when x==0 mod 4, they are tested in order t1,t2,t3,t4; when x==1 mod 4, they are tested in the order t2,t3,t4,t1, etc. If none of the polynomials are prime, no value is given. [From Harry J. Smith, Jan 28 2009, Jan 31 2009] Based on correspondence with Aldrich Stevens. LINKS Harry J. Smith, Comments on this sequence EXAMPLE The initial terms are {1, 1373}, {2, 1319}, {3, 1033}, {4, 1493}, {5, 853}, {6, 839}, {7, 593}, {8, 1093}, {9, 461}, {10, 487}, ..., {73, 11597}, {74, 12263}, {75, 12697}, {76, 13877}, {77, 13381}, {78, 14087}, {79, 14561}, {80, 15541}, {81, 15791}, {82, 16553} MATHEMATICA a = {4x^2 - 146x + 1373, 4x^2 - 144x + 1459, 4x^2 - 142x + 1301, 4x^2 - 140x + 1877}; (* functional "if" ladder to switch polynomials*) g[x_] := If[PrimeQ[a[[1 + Mod[x, 4]]]], a[[1 + Mod[x, 4]]], If[PrimeQ[a[[1 + Mod[x + 1, 4]]]], a[[1 + Mod[x + 1, 4]]], If[PrimeQ[a[[1 + Mod[x + 2, 4]]]], a[[1 + Mod[x + 2, 4]]], If[PrimeQ[a[[1 + Mod[x + 3, 4]]]], a[[1 + Mod[x + 3, 4]]], a[[1 + Mod[x, 4]]]]]]]; Flatten[Table[If[PrimeQ[g[x]], g[x], {}], {x, 0, 500}]] Length[%] Sort[Table[If[PrimeQ[g[x]], {x, g[x]}, {}], {x, 0, 500 }]]; PROG (PARI) {n=0; for( x=0, 12022, t=[4*x^2-146*x+1373, 4*x^2-144*x+1459, 4*x^2-142*x+1301, 4*x^2-140*x+1877]; for(i=0, 3, if( isprime( p=t[ (x+i)%4+1 ]), print(n++, " "p); write("b139414.txt", n, " "p); break)))} CROSSREFS Cf. A155814. Sequence in context: A135819 A181969 * A155925 A060981 A140125 A179915 Adjacent sequences:  A139411 A139412 A139413 * A139415 A139416 A139417 KEYWORD nonn AUTHOR Roger L. Bagula, Jun 09 2008 EXTENSIONS Clarified the definition of the sequence and added a PARI program. Harry J. Smith, with help from M. F. Hasler, Jan 31 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.