This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139352 Let the binary expansion of n be n = Sum_{k} 2^{r_k}, let e(n) be the number of r_k's that are even, o(n) the number that are odd; sequence gives o(n). 6
 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS e(n)+o(n) = A000120(n), the binary weight of n. a(n) is also the number of 2's and 3's in the 4-ary representation of n. - Frank Ruskey, May 02 2009 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 F. T. Adams-Waters, F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6 FORMULA G.f.: (1/(1-z))*SUM( z^(2*4^m)/(1+(2*4^m)), m >=0 ). - Frank Ruskey, May 03 2009 Recurrence relation: a(0)=0, a(4m) = a(4m+1) = a(m), a(4m+2) = a(4m+3) = 1+a(m). - Frank Ruskey, May 11 2009 a(n)=Sum_k {A030308(n,k)*A000035(k)}. - From Philippe Deléham, Oct 14 2011. EXAMPLE If n = 43 = 2^0+2^1+2^3+2^5, e(43)=1, o(43)=3. MAPLE A139352 := proc(n)     local a, bdgs, r;     a := 0 ;     bdgs := convert(n, base, 2) ;     for r from 2 to nops(bdgs) by 2 do         if op(r, bdgs) = 1 then             a := a+1 ;         end if;     end do:     a; end proc: # R. J. Mathar, Jul 21 2016 PROG See link in A139351 for Fortran program. (Haskell) import Data.List (unfoldr) a139352 = sum . map ((`div` 2) . (`mod` 4)) .    unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4)) -- Reinhard Zumkeller, Apr 22 2011 (PARI) a(n)=if(n>3, a(n\4))+n%4\2 \\ Charles R Greathouse IV, Apr 21 2016 CROSSREFS Cf. A000120, A139351-A139355, A039004, A139370-A139373. Sequence in context: A231735 A016429 A131852 * A214039 A089679 A290320 Adjacent sequences:  A139349 A139350 A139351 * A139353 A139354 A139355 KEYWORD nonn,easy AUTHOR Nadia Heninger and N. J. A. Sloane, Jun 07 2008 EXTENSIONS Typo in example fixed by Reinhard Zumkeller, Apr 22 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 07:26 EDT 2018. Contains 313756 sequences. (Running on oeis4.)