login
Decimal expansion of csc((1+sqrt(5))/2), where (1+sqrt(5))/2 is the golden ratio.
5

%I #25 Feb 07 2022 02:49:31

%S 1,0,0,1,1,1,6,7,3,6,6,1,4,6,5,2,2,5,4,8,9,6,1,6,7,1,1,3,5,1,7,0,5,5,

%T 8,7,7,9,4,4,6,1,5,3,1,8,0,6,6,2,4,2,8,2,0,2,8,2,4,0,4,9,7,6,6,5,7,8,

%U 8,2,6,9,7,8,7,7,5,5,0,9,6,1,7,2,9,4,7,0,3,9,9,5,8,1,1,1,3,6,1,9,2,6,8,8,2

%N Decimal expansion of csc((1+sqrt(5))/2), where (1+sqrt(5))/2 is the golden ratio.

%C By the Lindemann-Weierstrass theorem, this constant is transcendental. - _Charles R Greathouse IV_, May 13 2019

%H Vincenzo Librandi, <a href="/A139350/b139350.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%F Equals 1/A139345. - _Amiram Eldar_, Feb 07 2022

%e 1.00111673661465225489616711351705587794461531806624...

%t RealDigits[Csc[GoldenRatio], 10, 100][[1]] (* _Vincenzo Librandi_, Feb 19 2013 *)

%o (PARI) 1/sin((sqrt(5)+1)/2) \\ _Charles R Greathouse IV_, May 13 2019

%Y Cf. A001622, A094214, A104457, A098317, A002390, A139339, A139340, A139341, A139342, A139345, A139346, A139347, A139348, A139349.

%K nonn,cons

%O 1,7

%A _Mohammad K. Azarian_, Apr 15 2008

%E Edited by _Bruno Berselli_, Feb 19 2013