|
|
A139097
|
|
Form a sequence of words as follows: look to the left, towards the beginning of the sequence and write down the number of letters you see; repeat; then replace the words with the corresponding numbers.
|
|
4
|
|
|
0, 4, 8, 13, 21, 30, 36, 45, 54, 63, 73, 85, 95, 105, 119, 137, 158, 178, 200, 211, 227, 248, 268, 288, 309, 325, 347, 369, 390, 408, 424, 445, 465, 485, 506, 520, 537, 559, 579, 601, 614, 632, 651, 669, 688, 709, 725, 747, 769, 790, 808, 825, 847, 869, 890, 908, 924, 945, 965, 985, 1006, 1020, 1037, 1059
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The sequence of words is: zero, four, eight, thirteen, twenty-one, thirty, ... (in American English).
Hyphens and spaces are not counted.
This is an English version of the sequence in A139121.
a(0) = 0, a(n+1) = a(n) + A005589(a(n)). - Jonathan Vos Post, Jun 15 2008
|
|
REFERENCES
|
E. Angelini, "Jeux de suites", in Dossier Pour La Science, pp. 32-35, Volume 59 (Jeux math'), April/June 2008, Paris.
|
|
LINKS
|
M. F. Hasler, Table of n, a(n) for n = 0..423
|
|
EXAMPLE
|
The second word is "four" (and so a(2)=4), because at the end of the first word we can see four letters to the left.
|
|
CROSSREFS
|
Cf. A005589. See A060403 and A139121 for other versions.
Sequence in context: A312220 A335445 A060403 * A160395 A038793 A036709
Adjacent sequences: A139094 A139095 A139096 * A139098 A139099 A139100
|
|
KEYWORD
|
nonn,word,easy
|
|
AUTHOR
|
Jonathan Vos Post, May 12 2007
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Jun 08 2008
More terms from M. F. Hasler and R. J. Mathar, Jun 15 2008
|
|
STATUS
|
approved
|
|
|
|