|
|
A139044
|
|
Smallest prime divisor of the Fibonacci numbers > 1.
|
|
5
|
|
|
2, 3, 5, 2, 13, 3, 2, 5, 89, 2, 233, 13, 2, 3, 1597, 2, 37, 3, 2, 89, 28657, 2, 5, 233, 2, 3, 514229, 2, 557, 3, 2, 1597, 5, 2, 73, 37, 2, 3, 2789, 2, 433494437, 3, 2, 139, 2971215073, 2, 13, 5, 2, 3, 953, 2, 5, 3, 2, 59, 353, 2, 4513, 557, 2, 3, 5, 2, 269, 3, 2, 5, 6673, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Fibonacci number > 1, divided by its largest proper divisor.
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..1406 (terms 1..200 Vincenzo Librandi)
|
|
FORMULA
|
a(n) = A000045(n+2)/A032742(A000045(n+2)) = A000045(n+2)/A139045(n).
a(n) = A020639(A000045(n+2)). - Michel Marcus, Nov 15 2014
a(n) = A060383(n+2). - Alois P. Heinz, Oct 11 2015
|
|
MAPLE
|
with(numtheory): with(combinat): a:=proc(n) options operator, arrow: op(2, divisors(fibonacci(n))) end proc: seq(a(n), n=3..60); # Emeric Deutsch, May 02 2008
|
|
MATHEMATICA
|
First[First[FactorInteger[ # ]]]&/@Fibonacci[Range[3, 40]] (* Harvey P. Dale, Apr 30 2008 *)
|
|
PROG
|
(PARI) a(n) = factor(fibonacci(n+2))[1, 1]; \\ Michel Marcus, Nov 15 2014
(MAGMA) [Minimum(PrimeDivisors(Fibonacci(n+2))): n in [1..70]]; // Vincenzo Librandi, Dec 24 2016
|
|
CROSSREFS
|
Cf. A000045, A032742, A060383, A133021, A139045.
Sequence in context: A079369 A102867 A060383 * A060442 A060385 A080648
Adjacent sequences: A139041 A139042 A139043 * A139045 A139046 A139047
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Omar E. Pol, Apr 23 2008
|
|
EXTENSIONS
|
More terms from Emeric Deutsch and Harvey P. Dale, May 02 2008
More terms from Vincenzo Librandi, Dec 24 2016
|
|
STATUS
|
approved
|
|
|
|