login
A139031
Imaginary part of (4 + 3i)^n.
1
3, 24, 117, 336, -237, -10296, -76443, -354144, -922077, 1476984, 34867797, 242017776, 1064447283, 2465133864, -6890111163, -116749235904, -761741108157, -3175197967656, -6358056037323, 28515500892816, 387075408075603, 2383715742284424, 9392840736385317, 15549832333971936
OFFSET
1,1
COMMENTS
Sqrt(a(n)^2 + A139030(n)^2) = 5^n.
Division of each term by 3 generates an integer sequence 1, 8, 39, 112, -79, -3432, -25481, -118048, -307359, 492328, ... - R. J. Mathar, Apr 08 2008
FORMULA
Imaginary part of (4 + 3i)^n. Term (2,1) of [4,-3; 3,4]^n a(n) = 8*a(n-1) - 25*a(n-2), n>2, given a(1) = 3, a(2) = 24. (unsigned): Odd-indexed terms of A066771 interleaved with even-indexed terms of A066776.
O.g.f.: 3*x/(1-8*x+25*x^2). - R. J. Mathar, Apr 08 2008
EXAMPLE
a(3) = 117 since (4 + 3i)^3 = (-44 + 117i).
a(4) = 336 = 8*a(3) - 25*a(2) = 8*117 - 25*24.
a(3) = 117 = term (2,1) of [4,-3; 3,4]^3.
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Gary W. Adamson, Apr 06 2008
STATUS
approved