%I #33 Oct 08 2023 10:51:00
%S 0,1,1,5,257,227081,5180893281,4280906663314189,
%T 171185545597850136406017,426885502327596067385688208587793,
%U 83152665259106642682190066734067859360190625,1549180370826247785860196691818235616463808908569519107349
%N a(n) = discriminant of n-th Bell polynomial.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>.
%e a(4) = 257 because discriminant of the 4th Bell polynomial x + 7 x^2 + 6 x^3 + x^4 is 257.
%p seq(discrim(BellB(n, x), x), n = 0..12); # _Peter Luschny_, Oct 08 2023
%t Table[Discriminant[BellB[n, x], x], {n, 0, 10}] (* _Vaclav Kotesovec_, Oct 08 2023 *)
%o (PARI) a(n) = poldisc(Pol(vector(n+1, k, stirling(n, k, 2)))); \\ _Michel Marcus_, Oct 07 2023
%Y Cf. A106800.
%K nonn
%O 0,4
%A _Artur Jasinski_, Apr 05 2008
%E Offset set to 0 by _Peter Luschny_, Oct 08 2023