login
A138991
a(n) = Frobenius number for 5 successive primes = F[p(n), p(n+1), p(n+2), p(n+3), p(n+4)].
11
1, 4, 9, 23, 31, 54, 66, 101, 125, 143, 200, 261, 285, 307, 398, 434, 588, 563, 672, 708, 659, 717, 935, 1078, 1748, 1816, 1135, 1173, 1104, 1277, 1911, 1975, 2188, 2111, 2680, 2593, 2683, 3266, 2861, 3297, 3757, 3996, 4198, 3275, 2953, 3457, 4668, 6688
OFFSET
1,2
EXAMPLE
a(3)=23 because 23 is the largest number k such that the equation 7*x_1 + 11*x_2 + 13*x_3 + 17*x_4 + 19*x_5 = k has no solution for any nonnegative x_i (in other words, for every k > 23 there exist one or more solutions).
MATHEMATICA
Table[FrobeniusNumber[{Prime[n], Prime[n + 1], Prime[n + 2], Prime[n + 3], Prime[n + 4]}], {n, 1, 100}]
FrobeniusNumber/@Partition[Prime[Range[80]], 5, 1] (* Harvey P. Dale, Aug 15 2014 *)
CROSSREFS
Frobenius numbers for k successive primes: A037165 (k=2), A138989 (k=3), A138990 (k=4), this sequence (k=5), A138992 (k=6), A138993 (k=7), A138994 (k=8).
Sequence in context: A374055 A070713 A060250 * A361002 A138990 A014543
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 05 2008
STATUS
approved