login
A138989
a(n) = Frobenius number for 3 successive primes = F[p(n), p(n+1), p(n+2)].
11
1, 4, 13, 30, 53, 80, 117, 131, 194, 286, 293, 520, 613, 522, 1310, 858, 1001, 929, 1610, 1418, 1322, 1499, 1421, 2941, 3300, 3533, 3710, 3957, 2065, 2241, 3685, 4595, 3697, 3930, 5956, 12074, 5509, 5874, 14690, 7968, 6084, 6373, 12413, 12740, 6694, 21878
OFFSET
1,2
EXAMPLE
a(3)=13 because 13 is the largest number k such that the equation 5*x_1 + 7*x_2 + 11*x_3 = k has no solution for any nonnegative x_i. (In other words, for every k > 13 there exist one or more solutions.)
MATHEMATICA
Table[FrobeniusNumber[{Prime[n], Prime[n + 1], Prime[n + 2}], {n, 1, 100}]
FrobeniusNumber/@Partition[Prime[Range[50]], 3, 1] (* Harvey P. Dale, Dec 01 2015 *)
CROSSREFS
Frobenius numbers for k successive primes: A037165 (k=2), this sequence (k=3), A138990 (k=4), A138991 (k=5), A138992 (k=6), A138993 (k=7), A138994 (k=8).
Sequence in context: A264536 A161742 A041301 * A254830 A071400 A206806
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 05 2008
STATUS
approved